

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Bioorganic & Medicinal Chemistry Letters 13 (2003) 2829–2832

Synthesis and Antimycobacterial Activity of Capuramycin Analogues. Part 1: Substitution of the Azepan-2-one Moiety of Capuramycin

Hitoshi Hotoda,^{a,*} Miyuki Furukawa,^a Makiko Daigo,^a Kazuhiro Murayama,^a Masakatsu Kaneko,^a Yasunori Muramatsu,^b Michiko Miyazawa Ishii,^b Shun-ichi Miyakoshi,^b Toshio Takatsu,^b Masatoshi Inukai,^b Masayo Kakuta,^c Tomomi Abe,^c Tamako Harasaki,^c Takashi Fukuoka,^c Yukio Utsui^c and Satoshi Ohya^c

^aExploratory Chemistry Research Laboratories, Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan ^bBiomedical Research Laboratories, Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan ^cBiological Research Laboratories, Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan

Received 9 April 2003; accepted 13 June 2003

Abstract—Capuramycin analogues with a variety of substituents in place of the azepan-2-one moiety were synthesized from A-500359E and were tested for their translocase I inhibitory activity and in vitro antimycobacterial activity. Phenyl-type moieties were found to be effective substituents for capuramycin analogues. © 2003 Elsevier Ltd. All rights reserved.

Although standard medication for tuberculosis (TB) has already been established,¹ TB is still a major cause of death especially in the developing countries. Moreover, TB is on the rise once more even in the developed countries in part due to the spread of HIV infections and the emergence of multi-drug-resistant *Mycobacterium tuberculosis*.² Consequently, the development of a novel anti-TB drug with a new type of mechanism is being desired.

Translocase I (Mra Y) is one of the enzymes involved in the biosynthesis of peptidoglycan³ and is a possible target for developing antibiotics.⁴ In the course of screening for new antibiotics with translocase I inhibitory activity, we isolated capuramycin, which had originally been isolated from the culture broth of *Streptomyces griseus* 446-S3,^{5,6} and its methylated derivative, A-500359A.⁷ A-500359A inhibits reversibly and in a mixed and noncompetitive manner with UDP-MurNAc-(N^{ϵ} -Dns)pentapeptide (K_i =7.9 nM) and undecaprenylphosphate,

*Corresponding author at present address: Drug Safety Department, New Drug Development Division, Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan. Fax: +81-3-5740-3633; e-mail: hotoda@hq.sankyo.co.jp respectively. A-500359E lacking the azepan-2-one moiety of capuramycin was also isolated. 9

Capuramycin (R = H) A-500359A (R = Me)

Capuramycin and A-500359A were proven to have selective antibacterial activity against mycobacteria.⁸ The attempt to extend the antibacterial spectrum by chemical modifications was not successful, but it led to the discovery of new capuramycin analogues with weak

Scheme 1. (i) R_1R_2NH (excess), MeOH, rt to $60\,^{\circ}$ C; (ii) $Me_2C(OMe)_2$, Amberlyst 15 (H⁺), Me_2CO , 79%; (iii) 0.04N NaOH, MeOH–H₂O, then Dowex $50W\times8$ (H⁺), 92%; (iv) R_1R_2NH , DIPC, HOBT, DMF; (v) Amberlyst 15 (H⁺), MeOH.

antimicrobial activity against several Gram-positive bacteria. ¹⁰ In order to develop a novel anti-TB drug, capuramycin analogues having a variety of substituents in place of the azepan-2-one moiety were synthesized and their antimycobacterial activities were tested.

These new capuramycin analogues were synthesized from A-500359E combined with a variety of amines. In the case of amine with enough nucleophilicity, A-500359E was reacted with excess amounts of the amine in methanol, in a sealed test tube. The reaction took place via route A as shown in Scheme 1. Twenty test tubes containing different amines in each tube were placed in the 20-hole aluminum heat block and 20 reactions took place simultaneously. On the other hand, in the case of amine without enough nucleophilicity like aniline, A-500359E was acetonized, saponified, and then condensed with the amine using a condensing reagent via route B (Scheme 1). The desired product 1 was obtained after deprotection under acidic conditions. Experimental details with spectroscopic data are provided in the patent.¹¹

Some of the primary screening results for new capuramycin analogues are described hereinafter. The MIC and IC₅₀ values were determined according to previously reported methods.⁸ Capuramycin and A-500359A inhibit translocase I with IC₅₀ values of 10 ng/mL (18 nM) and 10 ng/mL (17 nM), respectively (Table 1).8 The MIC values for capuramycin and A-500359A against Mycobacterium smegmatis SANK75075 are 12.5 and 6.25 µg/ mL, respectively. Compound 5 having an nBu moiety in place of the azepan-2-one moiety of capuramycin retained moderate translocase I inhibitory activity and showed the same MIC value as capuramycin. On the other hand, compound 6 having an NMe group in place of the NH group of 5 showed no inhibitory activity against both translocase I and M. smegmatis, demonstrating the importance of the NH group of the amide moiety of capuramycin and its analogues. Compounds 9 and 10 having a simple cyclohexyl and cycloheptyl moiety in place of the azepan-2-one moiety retained potent activity. Terminal modification of the alkyl chain substituents with functional groups reduced the activity of capuramycin analogues (11–15). Substitutions with medium-size alkyl chain moieties drastically reduced translocase I inhibitory activity (16 and 17); however, the analogues retained moderate inhibitory activity against *M. smegmatis*. Compound 18 having a long-chain alkyl moiety showed no activity.

Compounds 19–33 having phenethyl-type substituents had moderate activity (Table 2). Compounds 34–46 having benzyl-type substituents were less potent than phenethyl-type analogues (Table 3).

Table 1. Translocase I inhibitory activity and antibacterial activity (*M. smegmatis* SANK75075) of capuramycin analogues with aliphatic substituents

Compd	R	Translocase I IC ₅₀ (ng/mL)	M. smegmatis MIC (μg/mL)
Capuramycin		10 (18 nM)	12.5
A-500359A		10 (17 nM)	6.25
A-500359E	MeO-	27	> 100
4	MeNH-	180	> 100
5	Me(CH ₂) ₃ NH-	280	12.5
6	Me(CH ₂) ₃ N(Me)-	> 2500	> 100
7	Pyrrolidin-1-yl	420	> 100
8	Me(CH ₂) ₅ NH–	30	12.5
9	Cyclohexyl-NH-	30	12.5
10	Cycloheptyl-NH-	27	25
11	EtO(CH ₂) ₃ NH-	140	100
12	MeS(CH ₂) ₃ NH-	70	50
13	HO(CH ₂) ₂ NH-	90	> 100
14	$H_2N(CH_2)_2NH-$	600	100
15	HO(CH ₂) ₄ NH-	170	> 100
16	Me(CH ₂) ₉ NH-	260	25
17	Me(CH ₂) ₁₁ NH-	390	25
18	Me(CH ₂) ₁₃ NH-	> 2500	> 50

Table 2. Translocase I inhibitory activity and antibacterial activity (*M. smegmatis* SANK75075) of capuramycin analogues with phenethyl-type substituents^a

Compd	R	Translocase I IC ₅₀ (ng/mL)	M. smegmatis MIC (μg/mL)
19	Ph(CH ₂) ₂ NH-	21	12.5
20	4-Me-Ph(CH ₂) ₂ NH-	34	50
21	2-MeO-Ph(CH ₂) ₂ NH-	32	50
22	3-MeO-Ph(CH ₂) ₂ NH-	19	50
23	4-MeO-Ph(CH ₂) ₂ NH-	40	25
24	$3,4-(MeO)_2-Ph(CH_2)_2NH-$	25	50
25	4-F-Ph(CH ₂) ₂ NH-	22	12.5
26	2-Cl-Ph(CH ₂) ₂ NH-	28	25
27	3-Cl-Ph(CH ₂) ₂ NH-	20	12.5
28	4-Cl-Ph(CH ₂) ₂ NH-	20	25
29	2,4-Cl ₂ -Ph(CH ₂) ₂ NH-	19	50
30	4-HO-Ph(CH ₂) ₂ NH-	60	50
31	Ph ₂ CHCH ₂ NH-	130	> 100
32	Pyridin-2-yl-(CH ₂) ₂ NH-	110	25
33	Thiophen-2-yl-(CH ₂) ₂ NH-	13	25

^aRefer to the template structure in Table 1.

Table 3. Translocase I inhibitory activity and antibacterial activity (*M. smegmatis* SANK75075) of capuramycin analogues with benzyltype substituents^a

Compd	R	Translocase I IC ₅₀ (ng/mL)	M. smegmatis MIC (μg/mL)
34	PhCH ₂ NH-	120	50
35	2-Me-PhCH ₂ NH-	500	12.5
36	4-Me-PhCH ₂ NH-	1200	50
37	4-F-PhCH ₂ NH-	200	50
38	2-MeO-PhCH ₂ NH-	280	50
39	4-MeO-PhCH ₂ NH-	700	100
40	3,4,5-(MeO) ₃ -PhCH ₂ NH-	420	> 100
41	3,4-(OCH ₂ O)–PhCH ₂ NH–	200	50
42	(S)-PhCH(Me)NH-	130	50
43	Naphthalen-2-yl-CH ₂ NH-	110	25
44	Furan-2-yl-CH ₂ NH-	280	100
45	Thiophen-2-yl-CH ₂ NH-	77	50
46	Pyridin-2-yl-CH ₂ NH-	360	100

^aRefer to the template structure in Table 1.

Compared with the above-mentioned compounds, capuramycin analogues with phenyl-type substituents had relatively potent activity (Table 4). Compound 47 having a phenyl moiety proved to be a more potent inhibitor of translocase I (6.5 ng/mL) than natural compounds, capuramycin and A-500359A. Compound 48 lacking the NH group of the amide exhibited no activity as in the case of 6. As compounds 47, 49, 61–62, and 65-67 showed relatively potent antibacterial activities against M. smegmatis, these compounds along with capuramycin and A-500359A were further tested for their antibacterial activities against mycobacteria of clinically more significance, that is *Mycobacterium* avium NIHJ1605, Mycobacterium intracellulare ATCC1954 E-3, and Mycobacterium ATCC12478, and their activities were compared with those of two typical anti-TB drugs, rifampicin and isoniazid (Table 5). Capuramycin, A-500359A and 47, which have a simple phenyl moiety, possessed almost similar MIC values ranging between 4 and 16 µg/mL. Among the capuramycin analogues, 65,12 which has a 3,4-difluorophenyl moiety, was found to have MIC

Table 4. Translocase I inhibitory activity and antibacterial activity (*M. smegmatis* SANK75075) of capuramycin analogues with phenyltype substituents^a

Compd	R	Translocase I IC ₅₀ (ng/mL)	M. smegmatis MIC (μg/mL)
47	PhNH-	6.5	6.25
48	PhN(Me)-	> 2500	> 100
49	3-Me-PhNH-	7.6	12.5
50	4-Me-PhNH-	13	12.5
51	$2,4-Me_2-PhNH-$	60	25
52	2-Et-PhNH-	54	50
53	4-Et-PhNH-	20	12.5
54	4- <i>n</i> Pr–PhNH–	31	12.5
55	4- <i>i</i> Pr–PhNH–	120	25
56	$4-(Me(CH_2)_5)-PhNH-$	160	12.5
57	4-CF ₃ -PhNH-	30	12.5
58	2-MeO–PhNH–	31	25
59	2-EtO-PhNH-	37	50
60	4-BnO-PhNH-	23	25
61	3-F-PhNH-	10	6.25
62	4-F–PhNH–	37	6.25
63	$2,3-F_2-PhNH-$	13	12.5
64	2,4-F ₂ -PhNH-	15	12.5
65	$3,4$ - F_2 - $PhNH$ -	9	6.25
66	4-Cl-PhNH-	18	6.25
67	4-Br–PhNH–	20	6.25
68	2-NO ₂ –PhNH–	40	25
69	Thiazol-2-yl-NH-	18	25
70	4- <i>t</i> Bu-Thiazol-2-yl-NH–	15	100
71	[1,3,4]Thiaziazol-2-yl-NH–	105	> 100

^aRefer to the template structure in Table 1.

Table 5. Antimycobacterial activity for capuramycin analogues

Compd	MIC (μg/mL)		
	M. avium NIHJ1605	M. intracellulare ATCC1954 E-3	M. kansasii ATCC12478
Capuramycin	8	8	8
A-500359A	8	4	16
47	16	4	8
49	4	1	8
61	2	2	8
62	4	2	2
65	2	0.5	1
66	4	2	16
67	8	0.5	8
Rifampicin	0.125	0.125	0.25
Isoniazid	1	8	2

values ranging between 0.5 and $2\,\mu g/mL$, demonstrating that 65 was less potent than rifampicin but equipotent to or more potent than isoniazid.

Among all the analogues mentioned so far, the antibacterial activities did not always parallel the translocase I inhibitory activities. This may be partially attributable to the difference in cell-permeability of the analogues as translocase I is located in the bacterial cell membrane. In conclusion, it was found that capuramycin analogues having phenyl-type substituents in place of the azepan-2-one moiety could be considered as candidates of novel anti-TB drugs based on their new mechanism of action. The in vivo antibacterial activity of these analogues will be published in a separate literature.¹³

References and Notes

- 1. O'Brien, R. J. In *Tuberculosis. A Comprehensive International Approach*; Reichamn L. B., Hershfield E. S., Eds.; Marcel Dekker: New York, 1993; p 207.
- 2. Grassi, C. Exp. Opin. Invest. Drugs 1997, 6, 1211.
- 3. Struve, G. W.; Sinha, R. K.; Neuhaus, F. C. *Biochemistry* **1966**, *5*, 82.
- Boyle, D. S.; Donachie, W. D. J. Bacteriol. 1998, 180, 6429.
 Yamaguchi, H.; Sato, S.; Yoshida, S.; Takada, K.; Utoh, M.; Seto, H. J. Antibiot. 1986, 39, 1047.
- 6. Seto, H.; Otake, N.; Sato, S.; Yamaguchi, H.; Takada, K.; Itoh, M.; Lu, H. S. M.; Clardy, J. *Tetrahedron Lett.* **1988**, *29*, 2343.
- 7. Muramatsu, Y.; Muramatsu, A.; Ohnuki, T.; Miyazawa Ishii, M.; Kizuka, M.; Enokita, R.; Tsutsumi, S.; Arai, M.; Ogawa, Y.; Suzuki, T.; Takatsu, T.; Inukai, M. *J. Antibiot.* **2003**, *56*, 243.
- 8. Muramatsu, Y.; Miyazawa Ishii, M.; Inukai, M. J. Antibiot. 2003, 56, 253.

- 9. Muramatsu, Y.; Miyakoshi, S.; Ogawa, Y.; Ohnuki, T.; Miyazawa Ishii, M.; Arai, M.; Takatsu, T.; Inukai, M. *J. Antibiot.* **2003**, *56*, 259.
- 10. Hotoda, H.; Daigo, M.; Takatsu, T.; Muramatsu, A.; Kaneko, M. *Heterocycles* **2000**, *52*, 133.
- 11. Hotoda, H.; Kaneko, M.; Inukai, M.; Muramatsu, Y.; Utsui, Y.; Ohya, S. PCT Patent, WO 01/14399, 2001.
- 12. Analytical data for **65**: IR (KBr) v 3396, 3334, 2938, 2837, 1685, 1618, 1536, 1518, 1463, 1414, 1386, 1327, 1267, 1242, 1210, 1115, 1060, 1019; 1 H NMR (270 MHz, CD₃OD) δ 7.85 (1H, d, J=8.1 Hz), 7.76 (1H, m), 7.40 (1H, m), 7.23 (1H, quartet, J=9.5 Hz), 6.09 (1H, m), 5.75 (1H, d, J=3.3 Hz), 5.74 (1H, d, J=8.1 Hz), 5.30 (1H, d, J=4.2 Hz), 4.82 (1H, m), 4.50 (1H, dd, J=2.0 and 6.4 Hz), 4.44 (1H, m), 4.25 (1H, dd, J=3.7 and 4.7 Hz), 4.10 (1H, m), 3.72 (1H, m), 3.26 (3H, s).
- 13. Doi, N.; Harasaki, T.; Inoue, H.; Kakuta, M.; Hotada, H.; Yamamura, N. *Antimicrob. Agents Chemother*. In preparation.